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ABSTRACT 

Two methods a re  presented f o r  the synthesis of analog computer networks 

tha t  approximate a random process depending on both t i m e  and a pos i t ion  para- 

meter. The networks are intended f o r  use i n  the simulation of random wind dis- 

turbances tha t  a f f e c t  a rocket or  other aerospace vehicle i n  f l i g h t .  The out- 

put of the analog computer network simulates the e f f ec t  of t h e  prescribed ran- 

dom process on the vehicle as i t s  pos i t ion  var ies  a r b i t r a r i l y  with t i m e .  The 

two inpTJts to the  analog computer network are a Gaussian white-noise random 

process and a function of time characterizing the variable pos i t ion  of t h e  

vehicle e 
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I INTR03UCTPBN 

'In t h i s  technical  note two methods are presented for the  synthesis of 

analog computer networks $hat approximate a random process depending on both 

time and a pos i t ion  parameter. The networks a re  i n t a d e d  f o r  use i n  the  simu- 

l a t i o n  of random wind disturbances tha t  a f f ec t  a rocket or other aerospace 

vehicle i n  f l i g h t .  

has two inputs.  One input i s  a Gaussian white-noise process and the  second 

iaput i s  a time f m c t i o n  characterizing the  posi t ion of t he  moving vehicle. 

The parameter characterizi-rg posi t ion may be taken to be a l t i t u d e  'in the  wifid 

disturbance application. 

Gaussiax random process tha t  approximates the instantaneous random disturbance 

affect ing a rocket or other sensing element as it undergoes an a rb i t r a ry  posi-  

t i o n  var ia t ion  h. time. 

the sensicg element be specif ied a p r i o r i ,  

appl icat ion it is necessary to synthesize only a s i cg le  network t o  represent 

the  disturbances a f fec t ing  vehicles having a wide var ie ty  of f l i g h t  t m j e c -  

t o r i e s  

Each network produced by e i the r  of the  synthesis procedures 

The outpct of each network is  a time-parameter 

It i s  not necessary t h a t  t he  posi t ion var ia t ion of 

Thus, i n  the wind simulation 

It i s  assumed tha t  t he  f erst s t a t i s t i c a l  momelzt of the  time/positioc- 

parameter process being approximated 4s  fdeQt ica l ly  zero and tha t  t h e  secoi?d 

s t a t i s t i c a l  moment i s  known. Processes having a nonzero f i rs t  s t a t i s t i c a l  

moment may be generated by the addition of a determicis t ic  functiorz t o  the  

random process generated by oce of the procedures described i n  th i s  t2cfinical 

note. 

d.ures i s  a time-parameter Gaussian rcndom process having first and second 

s t a t i s t i c a l  moments approximating the moments of the  o r ig ina l  time/posYi;ior- 

parameter random process 

The output of t he  analog computer 2etwork derived by each of the proce- 

The two synthesis procedures w i l l  be designated i n  t h i s  techrrical imte 

as t h e  '*covariance-expanSfon method" and as  the "spectyal-density method." 

covariance-expansion method i s  a d i r ec t  adaptation of the synthesis method 

fo r  the  r ea l i za t ion  of time-parameter random processes t h a t  w a s  preseurted in 

Technical Note No. 3 on th i s  pro jec t  (Reference 8) and fur ther  developed i n  

the  thes i s  of Reference 9. Tne spectral-density method i s  a d i r ec t  adaptelion 

The 

of the 

cesses 

synthesis method for the  r ea l i za t ion  

t h a t  w a s  presented i n  Technical Note 

One method of oktairiiilg experimental 

of pos i t  ion-par ame t e r  ran&om pro- 

N o ,  10 (Reference 3 ) .  
wind data  u t i l i z e s  a tracking 



radar to record the e f f ec t s  of' wind disturbance 03 the motion of an ascend- 

ing Jimsphere balloon (Reference 7 ) -  
t i on  of a covariance function t h a t  depends on a l t i t u d e  alone, 

form i s  best  sui ted f o r  use with the ccvariance-expansion synthesis procedure 

dfscilssed i n  Chapter I1 of t h i s  technical note. !The mechanization system 

derived by use of data i r z  t h i s  form is best  sui ted to simulate the wind dis- 

txrbances %hat a f f ec t  a vehicle i n  nearly v e r t i c a l  f l i g h t .  However, the syn- 

thes i s  procedure of Chapter I1 is  not a t  a l l  r e s t r i c t ed  f o r  use i n  v e r t i c a l  

f l i g h t  pat terns ,  

A t  the same time, unfortunately, it i s  of greater  mathematical complexity, 

and i n  general requires a greater  amount of s t a t i s t i c a l  data for implementa- 

t ion 0 

This data may be used fo r  the ealcula- 

Data i n  t h i s  

It i s  of greater  general i ty  than the method of Chapter 111. 

A second method of obtaining experimentalwisd data involves the re- 

cording of wind e f f ec t s  03 a sensor maintained a t  fixed a l t i t u d e  (Reference 

61, 
it i s  assumed tha t  the wind disturbance at a fixed a l t i k d e  may be represented 

as a stat ionary random process. Data expressed i n  this form, fo r  a succession 

of a l t i t udes ,  i s  best  sui ted f o r  use w i t h  the spectral-density synthesis pro- 

cedure discussed i n  Chapter I11 of t h i s  technical ncYce. 

system derived by rise of data i n  t h i s  form i s  best  sufted to simulate the 

wicd disturbances tha t  a f f e c t  a vehicle i~ nearly horizontal  f l i g h t ,  It i s  

kc: be noted tha t  even though the wind disturbance i s  assumed t o  be a s ta t ionary 

ranclom process depending on time fo r  each f ixed a l t i t a d e ,  the process may be 

xmstat ionary i n  the altit-zde parameter ., 

This data may be used t o  calculate  a power spec t ra l  density function i f  

The mechanization 

Unlike the procedure of Chapter 111, the  covariance-expansion syrithesis 

method of Chapter I1 makes no a s s ~ p t i o i ~  of s ta t ionar i ty .  The random process 

to be approximated may be eonstationary i n  both time and posi t ion parameters. 

Chapter I1 of t h i s  technical  note i s  devoted t o  a presentation of the 

covariaice-expansion synthesis procedure a A simple example i s  worked t o  
c l a r i f y  the procedure. 

spectral-density synthesis procedure An example i s  a l s o  worked i n  t h a t  

chapter t o  demonstrate application of the procedure. Chapter I V  co2tain_s a 

discussion of conclusions derived on the bas i s  of the research work done to 
date and contains some comments concerning future  plans f o r  the research. 

Chapter 111 is  devoted to a presentation of the 
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2-1. Introduction 

This chapter i s  devoted to a presentat ion of t he  covariance-expansion 

synthesis procedure. 

t h i s  procedure approximates a random process g ( z S t >  depending on position z 

and time t .  
pos i t e  random process x ( t )  = g ( z ( t ) , t ) .  

e f fec t  of the  o r i g i n a l  time/position random process on a sensing element hav- 

ing the  pos i t ion  z a t  the t i m e  ins tan t  t ,  
vided the random process i s  Gaussian, has a covariance expansion of the form 

of (2 ,2) ,  and provided the  posi t ion variable z i s  a monotone f u m t i o n  of tLme, 

Otherwise, the output of the  analog computer network i s  an approxination t o  

the o r ig ina l  random process. 

The output of the  anaLog computer network derived by 

Specificall jr ,  the  output of the  network approximates the com- 

Eie process x ( t )  ropresents the 

Tlie representation i s  exack pro- 

The notation used i n  this t echnica l  note has beep c%csen to conform 

to t ha t  used i n  Technical Note Ro , 3 (Reference 8) 
presented i n  t h i s  chapter i s  a d i r e c t  adaptation of the procedure i n  Technical 

Note No, 3* I n  order t o  save space, those d e t a i l s  ef proof of v a l i d i t y  of 

t he  procedure t h a t  appear i n  Tschnical Noke No. 3 are x t  repeated here. @nLy 

those s teps  a r e  included tha t  a r e  necessary to demonstrate! implemenfatioc.of 

t h e  synthesis method. 

The syrithesis procezure 

2-2. T%e Svnthesis Procedwre 

The time/position-parameter random process t o  be approximated i s  de- 

Here, z i s  a var iable  derioting the ixtartar2eous pos i t icn  noted as g ( z , t ) ,  

a t  time t of a sensing element t ha t  i s  a f fec ted  by t h e  rand.om process. 

The covariance function for  t he  random process g ( z , t )  i s  deJoted as 

where E i s  t h e  expectation operation and 

z' = l a rger  of ( z  and z2) 1 

z = smaller of (z and z2) L 
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t.' = l a rge r  of (t and t2) 1 

t = smaller of (t and t ) 1 2 

Here it i s  assumed that the expected value of g (z , t )  i s  iden t i ca l ly  zero. 

cesses w i t h  nonzero mean may be generated by the addi t ion of g ( z , t )  to a 

determinis t ic  function. 

Pro- 

It i s  assumed that the  covariance function of the  random process 

g ( ~ 9 . t )  may be expressed a s  a f i n i t e  s e r i e s  expansion i n  the form 

n 
( 2 4  

I 
where vdz' t ) and @ , ( z ,  t> a r e  hown functions of time and posi t ion,  

z, t) must be approximated by an expansion of this form. 

A 

equation (2.2) does not apply exactly,  the covariance fwnction r (z" , t' , 
g 

It i s  reca l led  t h a t  the pcs i t i on  var iable  z denotes the instantaneous 

pos i t ion  at time t of a sensing element that  i s  a f fec ted  by the random pro- 

cess  g ( z ,  t).  
pos i t ion  of the sensing element i s  described by a 

time z ( t >  e 

the  pos i t ion  is  described by a nonincreasing fx i c t ion  of time. 

Throughout t h i s  technical  note it w i l l  be assumed t h a t  the  

no2decreasfng function of 

However, the  synthesis procedure developed i s  equally va l id  if  

An analog computer network i s  t o  be synthesized having two inputs--a 

Gaussiavl white-noise waveform, and the function z ( t )  representing the instan- 

taaeous pos i t ion  of a sensing element. 

composite random process 

The output of the network i s  t o  be a 

The composite time-parameter random process x ( t )  represents t he  e f f e c t  of the  

t ~ e l p o s i t i o n - p a r a m e t e r  random process g( z ,t) on the sensing element having 

the instantaneous pos i t ion  z ( t >  

r(t19 t). 
The covariance function of ' the  random process x ( t )  i s  denoted as 

By use of (2.3) and (2,1) t h i s  may be expressed as 

4 



r(t-', t )  = E [x(tl)x(t2)] = r (z(t-'), t', z( - t ; )>  t) 
g 

By use of (2,2) the  covariance function r ( t L 9  t)  may be represented as a 
f i n i t e  s e r i e s  expansion 

n 

d t ' ,  t). = 1 q t ' )  Y i W  
i =1 

(2h) 

(2.5) 

where 

The analog computer network to be synthesized is  characterized by the  n-Lh 

order d i f f e r e n t i a l  equation 

Here x ( ~ )  denotes the  k'ch derivat ive of the  function x with respect t o  time. 

I n  shorter  notat ion,  (2,6) may be wr i t t en  as 

The function y represents  t h e  Gaussian white-noise ilzput to the  analog comp25- 

e r  network. 

i n  order to avoid d i f f e ren t i a t ion  of the noise input y s  the  eqza t io i  

of (2.7) may be converted in to  a set of n f i r s t -o rde r  d i f f e re s t i ak  eqxations. 

To make t h i s  conversion the  following iden t i f i ca t i cns  a r e  u t i l i zed :  

x(t) = x,(t) 

5 



X = x - a,(t) x1 + bl ( t )  y 

X (l) = - a ( t )  x1 + bo(&) y 

n-3 n 

n 0 

This s e t  can be wr i t t en  more corpisely i n  makrix notat ion as 

X = A ( t )  2 + B ( t )  y - 

[x] = [x,] = H x - 

where 

H = [ 3  0 9 0 0 O ]  

A ( t )  = 

B ( t )  

1 0 0  

0 1 0  

0 0 0  

0 0 0  

0 1  

0 0  ::I 
6 



The elements a bk i n  (2 ,8 )  a r e  re la ted  to the coeff ic ients  p ky  ‘k 
k’ 

i n  (2.6) by 

n-1-k 
(n-1-j) .O , (E- 1- j -k) 

’k =c  kl  (n-L-j-k) i n-1- j 
j= 0 

n- 1- k 

(2.10) 

If the  pk, qk 

Associated with the vector d i f f e ren t i a l  equation of (2,y) i s  the horno- 

a r e  showrr, then (2,101 and (2,ll) can be solved se- 

bko 
quential1y f o r  the ak, 

geneous equation 

The G1(t), @2(t), e 

dent, may be used i n  the construction of a fuidamental matrix s01ui;ion 

@ ( t)  sa t  isfyiiig 

@ (t)  of (2.5) which a re  taken t o  be l i nea r ly  inde->en- 
?? 

The matrix @(t)  i s  defined as 

@(t) = I- (2.14) 



where 

d _ -  
'ij - @  d t  ij-1 + an- j+ l  @il 

a n.d 

gkl = $(t) {k = 1, 2, ill 

= ak(z( t ) ,  t>  

It i s  noted t h a t  the chain r u l e  i s  to be used i n  the d i f f e ren t i a t ion  

Of $k(t) * 

(2.16) 

dz = -  -I-- - a t  a Z  d t  

The nonhomogeneous d i f f e r e n t i a l  eqEation of (2.9) with zero i n i t i a l  

conditions has the urique solut ion 

- x ( t )  = f @(t) @-l(s) B ( s )  y (s )  ds 
0 

where @-'(s) is  the matrix inverse of e($).  
A covariance matrix f o r  the vector x ( t )  can be wr i t t en  as - 

(2.18) 

T 
= @(t') 4-'(s) B ( s )  BT(s)  [@-'(s) ]  G T ( t )  ds 

0 

where superscr ipt  T denotes matrix transpose. 

The coe f f i c i en t s  a bk of (2.8) w i l l  now be determined. Associated k' 
with the  d i f f e r e n t i a l  equation of (2.7) i s  the homogeneous d i f f e r e n t i a l  equa- 

t i o n  

8 



L t ( X )  = 0 (2.19) 

The l i nea r  d i f f e r e n t i a l  operator L 

(2.5) by the  r e l a t ion  

can be specif ied i n  terms of the @ of t k 

where the Wronskian W i s  given by 

@2 * Y  4,) = 

(2.20) 

(2.213 

The coef f ic ien ts  p can be obtained using equation (2.20), The elemects k 
a 

by using (2.10) 

tha t  appear i n  (2.8) and is t h e  matrix A of (2.9) can be obtained d i rec tJy  k 

The elements bk of (2.8) and (2.9) now must be determined. Once the 

a 

wr i t ten  using equatiorn (2.15). 

can be wr i t ten  i n  the form 

are determined by the procedure described above, t he  matrix G ( t )  can be 

The matrix covariance expression of (2.1-8) 
k 

R ( t C ,  t )  = @(t') D ( t )  $-(t) T (2 2.2) 

where the  elements d 

the O i ( t )  and y i ( t )  of (2.5) i n  the form 

(t) of the  matrix D ( t )  maybe expressed i n  terms of i j  

= o  i # j  

The determination of the  elements of the matrices @(t)  and D ( t )  allows the  

determination of the elements of R ( t '  t )  by use of (2.22) 

9 



3c 
A matrix R (t" t )  i s  now defined as 

T 
R*(t ' ,  t )  = R ( t ,  t ' )  

T 
= @(t) D(t'-) @ (t") 

Let A ( t ' ,  t )  be defined as 

3t a ( t ' ,  t )  = R(- t ' ,  t )  - R (t ' ,  t) 

( 2  -24) 

FlnalLy, l e t  6ii be the  diagonal elements of the  matrix 

(2.26) 

It can be shown t h a t  

m e  matrix B ( t )  i s  now specif ied,  thus completing t h e  synthesis procedure. 

Eie ;qecknizat ion system t h a t  generates the random process x ( t )  i s  character- 

ized by the  set of d i f f e r e n t i a l  equations i n  (2.8). 

mechanizatior, system i s  shown i n  Figure 2.1. 

A block diagram of the 

It i s  important to achieve the  proper in tegra tor  i n i t i a l  conditions a t  

the  beginiiing of a computation cycle ( t  = 0 )  i f  the output of the mechaniza- 

t ior,  system i s  to r e a l i z e  the  correct  covariance function, Different i n i t i a l  

con6itions appl ied to t he  same mechanization system with the same posit ion- 

function exc i ta t ion  may gige r i se  to widely divergent covariance functions.  

I n  general, the  i n i t i a l  coriditions may be a l t e r e d  by manipulation of t h e  white- 

noise irtput and the  position-parameter z ( t )  input during r e se t t i ng  of the  

amlog  computer jus t  p r i o r  to t = 0 ,  

2-3. An Example 

A mmerical  example i s  presented i n  t h i s  sect ion to help c l a r i f y  the 

covariance-expansiai synthesis procedure 

The covariance funct ion f o r  the  random process g(z ,  t) i s  assumed t o  be 

10 



n s 
W 

x 
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(2.28) 

The coef f ic ien ts  i n  (2.2) a r e  seen from the  above t o  be 

I I - az - B t ’  
e ql(zl, t ‘) = c e 

I n  a similar m a n n e r ,  the  coef f ic ien ts  i n  (2.5) a r e  seen t o  be 

- ( rz ( t ’ )  - B t ’  
$l(t.‘) = c e 

(2.29) 

(2.30) 

P t  
y,(t) = c e 

The pk coef f ic ien ts  of (2.5) a r e  determined by use of the r e l a t i o n  i n  (2.20): .  

Expanding t h i s  determizant with the use of (2.30), there  r e s u l t s  

(2.32) 

A conrparison of (2-32) and (2.6) shows tha t  

‘Uti l izat ion of (2.10) provides the  s ingle  coef f ic ien t  of t h e  A ( t )  matrix of 

(2.9): 

12 



= p + CYz(l)(t) (2.34) 

The s ingle  coef f ic ien t  of t h e  @(t)  matrix of (2,14) i s  found by use of (2.15) 

and (2.30) : 

(2.35) 

The s ingle  coef f ic ien t  of the  D ( t )  matrix of (2,22) i s  found by use 

of (2.23): 

The s ingle  element matrix R ( t ‘ ,  t )  of (2.22) i s  found by use of (2.35) 

and (2*36) : 

T 
R ( t ” ,  t )  = P ( t ’ - )  D ( t )  ( t )  (2.37) 

Bt 1 - cYZ(t ” )  - B t ‘  
= [e2 e e e 

-E 
The matrix R ( t”,  t )  of (2.24) is  

T 
R* (t*, t )  = R ( t ,  t’-) 

- cuz(t) - @t 
e e 

2 
= [c e 

The difference matrix of (2 .25)  i s  

- cYZ(t ’ )  - B t  B t k  - CYz(t) - B t ”  
= rC* e e e - c2 e e e 

13 



The matrix of ( 2  2 6 )  is  found by use of (2.39) : 

= C6,l (2.40) 

F ina l ly ,  the  s ing le  coef f ic ien t  i n  the B ( t )  matrix of (2.9) i s  found 

by use of (2.27) and (2.40) : 

Specif icat ion cf t h i s  coef f ic ien t  completes the  synthesis procedure. 

The d i f f e r e n t i a l  equation character iz ing t h e  mechar?,ization system f o r  the 

r ea l i za t ion  of the  random process x ( t )  = g ( z ( t ) ,  t)  i s  obtained by subs t i tu -  

t ion  of the coef f ic ien ts  of (2.34) and (2,41) i n  the system of (2,8): 

A block diagram of the  mechanization system t h a t  implements the d i f f e r e n t i a l  

equation (2.42) is  shown i n  P i g w e  2.2. 
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111, THi3 SPECTRAL-DENSITY SYNTHESIS PROCEDURE 

3-1, Introduction 

This chapter i s  devoted to a presentat ion of the  spectral-density syn- 

t h e s i s  procedure, 

proced-ure approximates a random process g(z ,  t) depending on posi t ion z and 

t3me to Specif ical ly ,  the  output of t he  network approximates the  composite 

random process x ( t )  = g ( z ( t ) ,  t ) .  
t h e  o r i g i m l  time/position-parameter random process 02 a sensing element 

Paving the  pos i t ion  z a t  the in s t an t  t .  The representat ion is  exact f o r  each 

f ixed  pos i t i on  z provided the  o r i g i n a l  random process i s  s ta t ionary  i n  t i m e  

f o r  t ha t  pos i t ion  and has power spec t r a l  density i n  the  form of equation (3.1) 
below, 

tior1 t o  the  o r i g i n a l  process. The approximation i s  bes t  when z is  a slowly 

varying function of time. 

The output of the analog computer network derived by t h i s  

The process x ( t )  represents the e f fec t  of 

Otherwise, t h e  output of the analog computer network is  an approxima- 

3-Z0  T5e Synthesis Procedure 
p_ 

The time/position-parameter random process t o  be approximated i s  de- 

Here, z i s  a var iable  denoting the instantaneous pos i t ion  noted as g ( z , t ) .  

at t i m e  t of a sensing element that i s  a f fec ted  by the  random process, 

It i s  assumed t h a t  t he  expected value of g(z ,  t )  i s  iden t i ca l ly  zero, 

Processes with Eonzero mean may be generated by the addi t ion of g ( z 7  t) to a 
determinis t i c  function e 

A t  any f ixed  pos i t ion  z 7  it is  assumed tha t  the  random process g(z ,  t )  
i s  wide-sense s ta t ionary  i n  t he  time parameter t. The power spec t r a l  density 

a t  the  pos i t ion  z i s  denoted as Sz(w). 

density may be expressed as a r a t i o  of polynomials i n  w. 
It i s  assumed t h a t  t h i s  power spec t r a l  

c (z) w2n-2 + 0 "I- c2(z) w 2 "I- co(z) 2n- 2 
2 s (0) = 

Z d2,("> w 2n + + d2(z) w + do(z) 

k The c and d coeff ic ients  of w a r e  functions of pos i t ion  z. 

Goes not apply exactly,  t he  power spec t r a l  densi ty  must be approximated by an  

expression of t h i s  form. 

If equation (3.1) 

The power spec t r a l  densi ty  of (3.1) may be expressed as follows (see 
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Reference 1, page 227): 

2 

SZ("> = H z ( s )  
s = j w  

I (3.2) 

Here, H (s)  is  the t ransfer  function of a time-in-variant l i n e a r  f i l t e r .  

Physically, f o r  any f ixed  pos i t ion  z the  applicatio;? of a white-noise rardom 

process to the  input of a f i l t e r  having t ransfer  function H (s)  produces a t  
the output a random process x ( t )  having power spec t r a l  density X Z ( w ) "  

nomials i n  complex f r e p e n c y  s .  

2 

z 

Z"ne t r a m f e r  f w c t i o n  H (s)  may be expressed as a r a t i o  of two p d y -  
z 

The a and b coeff ic ients  of sk are  functions of posi t ion z .  A techniqcz 

f o r  determining these coef f ic ien ts  if  Xz(w) i s  known, i s  given OD page 233 of  

Reference l. 

k k 

The t ransfer  function H Z ( s >  of (303) may be rea l ized  i n  a variety of 

ways by the use of analog computer components (see References 4 and 5)  e 
I n  pa r t i cu la r ,  t h i s  t ransfer  function may be rea l ized  f o r  any f ixed z 

by a mechanization of the d i f f e r e n t i a l  equaticm 

(3.4) 

Here, y represents the white-noise random process t h a t  i s  applied as iaput 

to the  mechanization system, 

random process x ( t )  = g(z ,  t>  f o r  the par t icu lar  f ixed  value of posi t ion z 

previously selected.  

j["ne output of the mechacization system i s  the  

A method of mechanizire the t ransfer  function of (303) f o r  f ixed posi- 

t i o n  z that avoids d i f fe ren t ia t ion  of the white-qoise input y may be o5tained. 



by converting t h e  d i f f e r e n t i a l  equation of (3.4) to a set of f i r s t -o rde r  

d i f f e r e n t i a l  equations equivalent to (3.4) f o r  any f ixed  value of z (see 

Reference 8, page 8): 

x = x  1 (3.5) 

. . O  

&n- 1 = x - al(z) xl + bl(z) Y d t  n 

A s  was discussed previously, a mechanization of the set  of equations 

i n  (3.5) provides an exact r ea l i za t ion  of the random process x ( t )  = g(z ,  t )  
f o r  a iy  f ixed value of pos i t ion  z .  It might therefore  be expected t h a t  t he  

mechanization of t h i s  set of equations f o r  var iable  z provides an  approximate 

r ea l i za t ion  of the  composite random process x ( t )  = g ( z ( t ) ,  t )  when the  para- 

meter z i s  allowed to become a slowly-varying function of time z ( t ) ,  

analog computer network tha t  mechanizes t h e  set of equations i n  (3.5) when 

the pos i t ion  parameter i s  described by a function of time z ( t )  i s  shown i n  

Figure 3.1. 

An 

It i s  again important to achieve the  proper in tegra tor  i n i t i a l  condi- 

t ions  a t  the  beginning of a computation cycle ( t  = 0)  if the  output of t he  

mechanization system i s  t o  r e a l i z e  the  cor rec t  random process. This i s  rela- 

t i v e l y  straightforward t o  accomplish with t h i s  mechanization system. 

whrite-noise input y ( t )  i s  applied to t h e  network a t  a l l  times, 

r e s e t  operation of t he  analog computer just p r i o r  to t = 0 ,  the posit ion- 

parameter input z ( t )  i s  maintained constant a t  i t s  desired i n i t i a l  value 
long enough for the  output random process x ( t )  t o  become s ta t ionary  i n  t i m e .  

The 

During the  
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Figure 3.1. Mechanization System Derived by the  Spectral-Density 
Synthesis Procedure. 



3-3. An Example 

A numerical example is  presented i n  t h i s  sect ion to help c l a r i f y  the 

spectral-densi ty  synthesis  procedure. 

It i s  assumed t h a t  the random process g (z s  t) i s  wide-sense s ta t ionary  

i n  the  time parameter t a t  each fixed pos i t ion  z .  
power spec t r a l  densi ty  of the equivalent time-parameter process x( t) f o r  

each f ixed  z i s  given by the  expression 

It i s  assumed t h a t  the 

- a z  

(3.6) 

It is  noted t h a t  not er,ough information is contained i n  t h i s  character-  

i za t ion  to specify the covariance function fo r  t he  rand-om process g(z ,  t) 
uniquely. One possible  covariance function consistent with (3 .6 )  i s  

- a ( t ’  - t)  .I - az  
e (3 .7)  I I  2 

r g ( Z  , t , z ,  t) = c e 

This i s  iden t i ca l  t o  the  covariance function of (2.28) used i n  the numerical 

example of Section 3-2. Another of the i n f i n i t e  number of covariance functions 

consis tent  with ( 3 . 6 )  i s  

- 2cYz‘ + Q/z - p ( t L  - t)  
e ( 3  - 8 )  

I 2 rg(z  , t’, z ,  t) = e e 

By use of (3 .2 )  and (3 .6 )  the  t ransfer  function Hz(s) of ( 3 . 3 )  i s  
determined to be 

Fina l ly ,  a comparison of the expression i n  (3,,6) termwise with the 

expression i n  ( 3 . 3 )  shows t h a t  
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- az/2 
bo(") = c e (3.10) 

bl(z) = 0 

Specif icat ion of these coef f ic ien ts  completes the synthesis procedure. 

The d i f f e r e n t i a l  equation characterizing the mechanization system f o r  the  

example of t h i s  sect ion i s  obtained by subs t i tu t ion  of the coeff ic ients  of 

(3.10) i n  the system of (3.5) 

(3.11) 

A mechanization system f o r  generation of the  random process x ( t )  i s  

shown i n  Figure 3.2. This system provides an exact r ea l i za t ion  of the random 

process characterized by the  power spec t ra l  density of (3.6) f o r  every f ixed 

value of the  posi t ion parameter z. The system is expected t o  provide a good 

approximation to the o r ig ina l  random process f o r  slowly varying functions of 

posi t ion z ( t )  
A s  has been indicated previously, specif icat ion of t he  power spec t ra l  

density function i s  not suf f ic ien t  to characterize the o r ig ina l  time/position- 

parameter random process uniquely. 

must be known i n  order to determine constraints  t ha t  must be present on the 

pos i t ion  var iable  z ( t )  t o  provide good approximation. 

the covariance function to be approximated is  given by (3.7)9 then a compari- 

son of the coeff ic ients  of the d i f f e r e n t i a l  equations i n  (2.42) and i n  (3.11) 
shows t h a t  t he  following constraint  must be imposed on z ( t )  for  good approxi- 

mation: 

Thus, fur ther  s t a t i s t i c a l  information 

If i k  i s  assumed t h a t  
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The solut ion to the  d i f f e r e n t i a l  equation of (2.42) provides an exact reali- 

zation of the  given covariance function. If the co 

i s  imposed, then the coef f ic ien t  (and thus the solut ion)  of the equation of 

(3.11) characterizing the  approximation are closely equal to t h  

(and hence the solut ion)  of t he  exact equation of (2.42). 

r a i n t  of (3. 
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I V .  CONCLUSIONS 

I n  t h i s  technical note two methods have been presented f o r  the syn- 

t h e s i s  of an analog computer network whose output approximates a random pro- 

cess depending on both tlme and a posi t ion parameter. The covariance-expan- 

sion synthesis method i s  the more general of the two methods. It involves 

no r e s t r i c t i o n  02 the  r a t e  of change of the posi t ion parameter z ( t )  and no  

assumption of s t a t iona r i ty  i n  time f o r  a f ixed posi t ion,  whereas both of 

these r e s t r i c t i o n s  a r e  present with the spe@&al-density synthesis procedure a 

On the other hand, the covariance-expansion method i s  mathematically 

It requires a la rger  number more complex than the spectral-density method. 

of computer elements f o r  implementation than the spectral-density method. 

Further,  it requires  a more extensive specif icat ion of the s t a t i s t i c a l  pro- 

p e r t i e s  of the random process being simulated than does the spectral-density 

method. Unlike the spectral-density method, the covariance-expansion pro- 

cedure requires  the generation of derivatives of various orders f o r  the posi- 

t i o n  variable z ( t ) .  These derivatives may or may not be readi ly  avai lable  as 

a portion of the aimlog conputer solution of the overa l l  simulation problem 

being studied. 

A Gaussian white-noise random process i s  one of the inputs for the net- 

work derived by e i the r  synthesis procedure. I n  neither case i s  a d i f fe ren t ia -  

t i o n  of the white-noise waveform required. 

The grea t  advantage of the synthesis techniques presented. in ",his 
technical note over those previously investigated i s  that only a s ingle  net- 

work need be synthesized f o r  use with a wide range of vehicle t r a j ec to r i e s .  

This i s  a fac tor  of importance because of the considerable mathe-matical and 

physical comglexity encountered i n  synthesizing a network to generate a pre- 

scribed nonstatioEary random process, I n  some simulation problems, such a s  

a t r a j ec to ry  optimization problem, the t ra jec tory  var ies  from one computer run 
to another. I n  a problem of t h i s  type it would ordinar i ly  not be feas ib le  to 
construct a d i f fe ren t  random process generator f o r  each d i f fe ren t  %rajectory.  

I n  general, it i s  f e l t  that the covariance-expansion synthesis procedure 

i s  to be preferred over the  spectral-density synthesis procedure. The r e su l t -  

ing network can always be simplified by eliminating appropriate terms in the 

d i f f e r e n t i a l  equations characterizing the  network. Use of the spectral-density 

method seems t o  be indicated primarily i f  wind data is  presented i n  terms of 
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the  power spec t r a l  density function a t  a succession of a l t i t u d e s .  

The two examples presented i n  t h i s  technical  note were se lec ted  t o  

i l l u s t r a t e  the bas ic  procedures involved i n  each synthesis method. mese 

examples are not intended t o  be of p r a c t i c a l  importance. 

experimental wind data w i l l  be u t i l i z e d  i n  an appl icat ion of one of the pro- 

” cedures t o  the synthesis of an analog computer network fo r  t he  simulation of 

I n  the near fu ture ,  

random wind disturbances 
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